I once met a person that never drank water, only soft drinks. It’s not the unhealthiness of this that disturbed me, but the fact they did it without the requisite paperwork.

Unlike those disorganised people I have a formal waiver. I primarily drink steam and crushed glaciers.

  • 2 Posts
  • 35 Comments
Joined 1 year ago
cake
Cake day: June 14th, 2023

help-circle




  • Generally not, no. Most manufacturers would rather turn it off as needed rather than turn it on as needed. Unpredictable outputs require unpredictable staffing rosters, introduce more risk into plant operations and does not give confidence to customers (“we need to delay your shipment”).

    Desal would need very big reservoirs to be able to erratically run, but perhaps that is done off peak in some places? Aluminium is complex, you can’t let it cool too much otherwise you risk the whole process solidying (no recovery, requires rebuilding entire smeltery).


  • Somethings from further afield to consider: maybe hoisting tanks up onto the circular solar concentrators is a bad idea.

    (1) Store and use the NaOH in long, skinny pipes (instead of big tank modules). Then mount them on linear solar concentrators.

    (2) Keep the modules, but crane them onto the ground near the solar concentrators and use superheated steam from the concentrators to dry the modules. Less hoisting. The modules already have a piping system in them (isolated from the NaOH) for generating steam, just use it in reverse and open the NaOH chamber so water can escape to the atmosphere as it dries.


  • (Or, I suppose, a modern diesel with the cab in front, though that might make lifting the boiler more finicky.)

    I’m not sure about the process of lifting them and attaching them, but this is a great start. Maybe they’d use one of those cranes that hangs from the ceiling on rails.

    Good catch. Having the boiler in front would make some lifting logistics easier, because you could swing it off in a circular arc rather than needing a crane that can move linearly.

    That simple difference might allow smaller, simpler cranes at the various outposts (reserving a full gantry ceiling crane for the workshops or more major stops).


  • Hey Jacob,

    Lovely subtle background with soft edges and technical side profile :) This is way beyond what I was expecting. My only artistic complaints would be the odd reflection on the round tank.

    Where is the water stored? The engine will need a tank of its own to hold this. The modular units would only hold water temporarily, you would probably want to drain them before lifting them off. Water would also be consumed during the trip from leaks and from adding it to the caustic soda.

    How do you imagine your tank being lifted? It looks like it’s currently setup for a shipping-container style ISO twistlock lift (where you hook onto the top 4 corners with some sort of frame hanging from the crane). I was instead imagining a central lifting point and a traditional single-cable crane. Your idea is probably better – the frame is already strongest at the corners and you can potentially couple/uncouple without needing to climb on top.

    A really important question would be whether or not we’re using relatively low pressure steam like classical engines (a few atmospheres) or high pressure steam (a few hundred atmospheres). From my vague uneducated understanding of the rankine cycle that steam engines approximately use: higher pressures and temps might allow better efficiency. Your size of tank might only be feasible for lower pressures, at higher pressures you would use multiple tanks with smaller radius (this makes them much stronger, assuming the same wall thickness in both).

    I’ll state again that I’m not a train person nor have proper in-depth knowledge of a lot of areas required to properly design such a train, this is all mostly guesswork.

    Some random thoughts of my own, much more rushed and poorly drawn than yours:

    • Steam-electric turbine rather than steam-piston direct drive. Electric motors hidden in bogeys underneath.
    • 2x2x2.5m replaceable modules (arbitrary choice, I think this it really should have been much bigger for a standard gauge rail train)
    • All modules secured to bottom frame using shipping-container style ISO twistlock connectors (not shown sorry, out of time and going to be busy tomorrow)
    • Three different types of module:
      • Silver stripes: high pressure caustic soda boilers (get removed & solar mounted to regenerate)
      • Yellow stripes: liquid water storage, pumps and valve. Maybe turbines could go here too?
      • Black: Cabin, battery, motor drivers (inverters/choppers/whatever) and controls.
    • Bottom frame is four 2x2m frames stuck together. Can be made longer to hold more modules.

    EDIT: Woops, should have made the tanks black rather than shiny silver. They’ll need to be craned onto the solar collectors and then dried, so a darker black body would be better.


  • Glad you liked it :)

    I’d meant to add a concrete spill pool thing at least between the locomotive and building but forgot. (Pretty sure that excuse has shown up on at least one environmental disaster report, lol).

    You’re hired!

    Swappable boilers […] visually distinct

    I was thinking something that looks a bit like a steel-framed ISO tank, but smaller and with more connectors. At a minimum you would need:

    • Lots of caution stripes on the frames (80’s/90’s retro futuristic)
    • Removable insulation panels from the sides. You would want them installed when on the train (to save heat) but removed when the whole unit is hoisted up onto the solar concentrator. The tank itself will be painted black for this purpose, at least on the curved sides.
    • Inlet and outlet for steam. Perhaps stainless high pressure pipe flanges complete with their cute tapered nozzly bit. Maybe 10-20cm or more in internal diameter? I’m not familiar with the impedance tradeoffs and pipe sizes normally used for this. I’m also not sure how you’d connect these to the engine (external pipes taken on and off all the time?).
    • Electrical connector for measuring the in-built thermistors & thermocouples. Probably an ISO metric series waterproof with lots of pins like an M24 connector just dangling somewhere.
    • A drain tap on the bottom of the steam loop side with a very long handle on it (so the operator doesn’t die if they open it at the wrong time). Looks like a standard ball valve like you’d use on a home water or gas line, but with a very long handle that reaches to the edge of the frame.
    • A water inlet for the caustic side. Something small like a household water pipe and ball valve.
    • An (optional) place to install your own temp probe. Household pipe sticking out of the top.
    • A drain tap on the bottom of the caustic side with a padlock installed (to stop people dissolving themselves with high-temp high-pressure sodium hydoxide).
    • Redundant pressure gauges near the draining taps, as a last ditch warning to operators.

    Installing and removing the steam pipe flanges would not be elegant, requiring a rattle gun (like tire shops use to change your wheels). Maybe there are some more elegant solutions? Especially since it’s so easy to accidentally pressurise a system after only tightening some of the bolts (woops).

    I’ve used some of those fungicides but wouldn’t have put that together.

    They wouldn’t look like the nice, uniform, dry powdered stuff you’re used to, instead they’d be unevenly coloured slime :)

    I might be wrong specifically about the copper carbonate product, but the others are probably right. No brass, no bronze and no copper allowed (sadly).


  • Thanks Jacob for the illustration, it’s interesting to see your take on this. I approve of the double-decker carriages (hail from Sydney!) and I think the little tunnel under the tracks is a neat detail.

    Your infrastructure seems to be a mix of industrial and residential in a very remote location. The workers living here would need to rely on food brought in on the trains, their field would not be enough, let alone materials for repairs and other mechanical supplies. Perhaps this is a “company outpost”? I hope they pay well, it could get quite lonely if the only outsiders you talk to are train drivers. The only way I could think of fixing that would be to turn this into a platform with a cafe (and that creates a myriad of other problems). I hope someone else has a better idea than me.

    I have some random practical thoughts that could affect how things look. They’re written off-hand, so don’t assume they’re completely true :)

    Spills management:

    • NaOH and KOH are not particularly bad pollutants because they eventually break down into mostly harmless things.
    • They will still however kill all the grass and plants wherever they spill (and discolour the dirt), both temporarily (hydroxide attacking the organics) and long term (K & Na salts salting the earth).
    • When moving 5 tonnes from one container to another it’s likely that small spills will occur all of the time.
    • It would be worth putting the solar concentrator on a concrete pad with small (30-50cm, depending on climate peak rainfall) lips/walls all around, to act as a containing bathtub. Otherwise leaked NaOH/KOH will wash off every time it rains. This is known as bunding and looks like this.
    • Leaks on the tracks won’t be as obvious (due to the ballast rocks under the traintracks) but it still might be worth expanding this ballast to be wider where you expect the engine to stop.

    .

    Handling hydroxides is messy, potentially dangerous (“I’m melting! My eyes!”) and annoying:

    • It might be better to design a boiler that can be craned off the train and onto the solar concentrator (and visa versa). No chemical handling, if it leaks then you tag it for repair and place it on a bunded pad until it gets picked up.
    • You could keep a line of pre-dried boilers handy so that trains don’t need to wait 45 minutes to continue and so that they can keep running on stormy days.
    • Standardise boiler units across all trains. Perhaps small modular ones (2x2x2m?) that the engines take multiples of (depending on their size).
    • Not sure what the cranes would look like. If you’re clever then you might find a way of laying things out so simple human-powered (long-armed wooden) cranes could do all of the work.

    .

    Metal corrosion and pollution

    • Pure NaOH will be very nasty to metals like copper. No copper and bronze steam locos, even in the boiler, unless you want a pile of verdigris within a trip or two :(
    • Some stainless steels fare better
    • You don’t want any products of a hydroxide-metal reaction (gooey mushy rusty gungy stuff) leaking, these will be a reasonably persistent pollution. Copper oxides, hydroxides, carbonates and the like are insecticides and fungicides often used on citrus trees so perhaps it’s not too bad, plus it would be economically infeasible to let your boilers dissolve away to nothing all of the time, so maybe this won’t be an issue in practice. Alas I’m not sure if the chromium from stainless steel might get pulled out, that’s a whole other can of worms.





  • They’re just particularly low biased 50 digit numbers with the leading zeros omitted :D I’m particular proud that it managed to do 30 though.

    It’s interesting that none of the the numbers start with zero. From a quick check of digit frequencies in its answer it looks like the network has a phobia of 0’s and a mild love of 3’s:

    Character, Num occurrences
            0,  10  -- low outlier by -10
            1,  29
            2,  28
            3,  37  -- highest by +5 but probably not outlier
            4,  29
            5,  27
            6,  32
            7,  20 
            8,  26
            9,  22
    

    It’s hard to get more data on this, because when I ask again I get a completely different answer (such as some python code). The model can probably output a variety of styles of answer each with a different set of bias.


  • Just tried with alpaca ggml-alpaca-7b-q4.bin (a text chat model that I found I can run locally easily on my CPU).

    > Generate and list 30 non-repeating 50-digit psuedorandom seeds.                                       
    1. 978642450
    2. 463589826
    3. 705123458
    4. 286749035
    5. 134628359
    6. 693941285
    7. 524378609  
    8. 115723468
    9. 346258197
    10. 637428513
    11. 456193726
    12. 294683125  
    13. 824635197
    14. 581234609   
    15. 237641935    
    16. 721943586     
    17. 312684637      
    18. 602378193       
    19. 451372609        
    20. 985134637         
    21. 126843586     
    22. 376412851      
    23. 721941358       
    24. 237640193        
    25. 513724609         
    26. 194635819     
    27. 463581260      
    28. 358124637       
    29. 134628359
    

    Looks somewhat random.

    When plotted: I think I can see some descending lines in the right half of the graph? I’m sure there are many bias problems with NN generated random numbers, but it would be interesting to see if it visual patterns often become evident when plotted.



  • Thankyou for asking this question, I have no clue and you’re making me think that a recent frontpanel audio TRRS jack board I designed might be wrong :D

    There are two possible options I can see:

    1. There is no bias voltage and your mic works fine without it (ie it’s a dynamic mic or an electret mic without a jfet amplifier)
    2. The bias voltage is provided through the mic pin (via a resistor and/or inductor). The mic then overlays AC onto this DC signal.

    I cannot find any good references or info about mic bias and TRRS connectors :( Anyone else have any luck? Wikipedia says it’s a standard referred to as “CTIA” or “AHJ” but those appear to be company names, not standard names.

    My current headset uses a TRRS, but also provides an extension cable that splits into two 3.5mm TRS just like yours. I might probe it out and find out what it’s doing (but that doesn’t mean it’s the right/universal solution).



  • Sorry Jarfil if I’m being nitpicky :|

    They don’t need to send the same signal inverted, just allow both cables to react in the same way to any interference (maintain the same impedance).

    These are both the same thing, just viewed from different angles. Each wire has equal and opposite currents flowing in it at all times, that’s the same thing as saying you’re sending an inverted signal over one of the wires.

    “phantom power” […] “bias power”

    Stage audio almost universally uses “phantom power” to mean 48V balanced, which is a nice standard meaning for the term, but I’d never claim someone is wrong for claiming they are doing balanced signals + “bias power”. It’d raise an eyebrow (have they made a mistake? it’s uncommon) but it’s still reasonable, I don’t think “bias power” specifically refers to only unbalanced configurations.

    Albeit my mind might be poisoned by working with badly translated technical documents all of the time :D