• KoboldCoterie@pawb.social
      link
      fedilink
      arrow-up
      8
      ·
      edit-2
      1 year ago

      It’s a weird concept and it’s possible that I’m using it incorrectly, too - but the context at least is correct. :)

      Edit: I think I am using it incorrectly, actually, as in reality the difference is infinitesimally small. But the general idea I was trying to get across is that there is no real number between 0.999… and 1. :)

      • LegendofZelda64@lemmy.fmhy.ml
        link
        fedilink
        arrow-up
        2
        arrow-down
        1
        ·
        1 year ago

        I think you did use it right tho. It is a infinitesimal difference between 0.999 and 1.

        “Infinitesimal” means immeasurably or incalculably small, or taking on values arbitrarily close to but greater than zero.

        • Kogasa@programming.dev
          link
          fedilink
          arrow-up
          4
          ·
          1 year ago

          The difference between 0.999… and 1 is 0.

          It is possible to define a number system in which there are numbers infinitesimally less than 1, i.e. they are greater than every real number less than 1 (but are not equal to 1). But this has nothing to do with the standard definition of the expression “0.999…,” which is defined as the limit of the sequence (0, 0.9, 0.99, 0.999, …) and hence exactly equal to 1.